三個月前,筆者有一篇高溫超導論文[1]發(fā)表在Nature出版集團的《Scientific Reports》上,該文推導出超導臨界轉變溫度Tc與材料(臨界溫度以上)強關聯(lián)區(qū)霍爾電阻率p之間的標度關系。此文發(fā)表后,筆者對于在實驗上證實這一標度關系非常有興趣,所以迫切期望得到超導實驗界同行的反饋;谶@個目的,筆者聯(lián)系了美國布魯克海文國家實驗室和MIT相關實驗室主管,并得到他們的積極回應(當然他們現在是否在做這個實驗我還是不知道,美國人說話總是比較客氣的)。 在此期間,筆者倒從未得到國內物理同行的回饋。由于有其它研究工作要做,精力有限,筆者對超導論文后續(xù)實驗的關注也就暫時冷了一段時間。不過,讓人意外的是,后來筆者居然收到一位藥學“國家杰青”教授對筆者論文的“評價”。事情的起因是,筆者這篇《Scientific Reports》上的論文在學校主頁上打了一個科技新聞。當時筆者內心倒是覺得該“標度定律”是首次面世,也值得打一個廣告,相比于那些“不痛不癢”的廣告論文,筆者對自己的成果倒是很有信心的(中國有句古話:不是猛龍不過江)。在筆者看來,它是筆者最得意的四個原創(chuàng)工作之一(見文《我寫在祖國的四篇代表性論文》)。 但是這一新聞卻引來了一位藥學“國家杰青”教授的強烈批評,并最終導致筆者科研成果的新聞在公布幾天之后便被下架了。筆者大感驚奇,所以甚想傾聽該教授的“批評意見”。但是一聽之下,卻大感失望。 該藥學“國家杰青”教授的批評意見是:《Scientific Reports》是交1萬塊人民幣就可以發(fā)論文的爛期刊,所以筆者的研究成果太差。 筆者有興趣查了一下該教授的研究領域:化學及生物醫(yī)藥分析。一位可能連“朗道-金茲堡方程”與“重整化群分析”都不知道的教授,居然可以評判一篇高度專業(yè)的超導場論論文。而他依賴的憑據就是“《Scientific Reports》是爛期刊”,僅此而已!筆者認為這一案例已經極大的反映出了國內科研評價的某種“偏執(zhí)”(只看期刊不看文):以至于一位“生物醫(yī)藥”教授可以評判一篇“高溫超導”專業(yè)論文的優(yōu)劣。 借此博客,筆者也想回應一下那位藥學“國家杰青”教授的批評:要是《Scientific Reports》真是交1萬塊人民幣就可以發(fā)論文的期刊,那筆者最得意的工作之一“量子本性”[2]就不會發(fā)表在《ScienceOpen Research》這一非SCI期刊上了。
俗話說:東方不亮,可能西方就會亮。
1個多月前美國科學媒體《超導周刊》(Superconductor Week)的主編Klaus Neumann注意到了筆者發(fā)表在《Scientific Reports》上的“標度定律”在超導工業(yè)制備中的潛在應用價值,所以希望采訪一下筆者。筆者內心當然是很希望“標度定律”可以被用于制備高溫超導的,所以接受了采訪,而且筆者也有一些想法希望與“微觀超導領域”的學者分享!冻瑢е芸罚⊿uperconductor Week)對筆者的訪談出版在2016年6月7號刊。下面貼出全文(筆者僅翻譯出希望與“微觀超導領域”學者一起分享的想法):
Southwest University Models Competition Between Disorder and SC Yong Tao, Researcher at Southwest University in Chongqing, China, has proposed the use of a Lagrangian function, which combines the Landau-Ginzburg and Chern-Simons term, for describing the competition between disorder and superconductivity. Tao applied Wilson’s renormalization group methods to the Lagrangian function to describe the normal-to-superconducting transition in superconducting thin films. Tao also obtained a scaling law between Tc, film thickness, sheet resistance of the film in the normal state, and number density of the electrons at the normal state. The scaling law is in agreement with recent experimental investigations [Ivry, Y. et al, Physical Review B 90, 214515 (2014)]. Tao said that the findings may help raise Tc in HTS materials. Goal to Understand Physical Laws Around SC/Disorder Transition “The main purpose of this research is not to give a response to the difficulties of describing the competition between disorder and superconductivity,” commented Tao. “ In fact, this research mainly investigates what physical laws will occur around the transition point between disorder and superconductivity. (譯文:陶談到:“這篇論文的主要研究對象并非針對‘無序與超導’之間的競爭機理。事實上,我主要想調查超導臨界點會顯現出怎樣的物理定律”。)
“In the past, many condensed matter physicists paid more attentions to micro-mechanisms that trigger HTS. They believed that the Tc could be substantially raised if and only if the underlying micro-mechanisms could be clarified. Physicists have proposed many theories involving different sorts of micro-mechanisms for explaining HTS, but so far concrete advances that raise the Tc have only slowly been realized. (譯文:“在過去,很多凝聚態(tài)物理學家都花費太多的精力去研究高溫超導形成的微觀機理。他們大多都相信只有高溫超導的微觀機理被搞清楚,才有可能極大的提升超導轉變溫度。遺憾的是,盡管這些凝聚態(tài)物理學家們已經建議了各種各樣的高溫超導微觀理論,但是提升超導轉變溫度仍舊進展緩慢!)
“Instead of analyzing different sorts of micro-mechanisms, my research is merely a phenomenological work. I have no interest in clarifying micro-mechanisms, but want to know what physical laws will occur around the transition point. If these physical laws exist, they must be the necessary conditions for HTS, and by utilizing them one should be able to manufacture HTS.” “This case resembles the invention of steam engine. As is well known, macroscopic thermodynamics is a phenomenological work, but it has provided all the necessary conditions for materializing a working steam engine. Because of their understanding of thermodynamics, eighteenth-century engineers didn’t have to wait until Boltzmann clarified the micro-mechanisms of macroscopic thermodynamics to manufacture a working steam engine.” (譯文:“與那些試圖破解出‘高溫超導微觀機理’的雄心相比,我的研究僅僅只是一個唯象工作。我并沒有任何的興趣去破解出‘高溫超導微觀機理’,而僅僅只是希望搞清楚超導臨界點會發(fā)生怎樣的(宏觀)物理定律。如果這些定律確實存在,它們必定是形成高溫超導體的必要條件。因此,依靠操控這些定律的變量就有望制備高溫超導”。 “我所建議的方案非常類似于‘蒸汽機’的制備。眾所周知,盡管宏觀熱力學僅僅只是一個唯象工作,但是它卻提供了制造‘高效可茲利用的蒸汽機’的必要理論基礎。正因為宏觀熱力學的出現,18世紀的工程師并不需要等到玻爾茲曼發(fā)明出‘宏觀熱力學的微觀基礎’(統(tǒng)計物理學)才去制造‘高效可茲利用的蒸汽機’”。)
First Study to use Lagrangian Function to Describe HTS Tao added that he believed he was the first to suggest the use of a Lagrangian function to describe HTS: “Chern-Simons theory has been used to describe the Fractional Quantum Hall Effect (FQHE) when considering a 2+1 dimensional space-time. Different from FQHE, my model is established in a 3D space, and the Chern-Simons gauge field is considered as the electromagnetic field. Nevertheless, in FQHE the Chern-Simons gauge field is considered an imaginary field. “The Lagrangian function in my model can only describe a superconductor which is a strongly correlated electron system. HTS is such a system. Unlike LTS, HTS has a characteristic temperatureT* which is larger than the Tc: when the temperature lies in between Tc and T*, electron pairing has materialized. “In my opinion, such a temperature interval implies a strongly correlated electron system, which will induce the emergence of the Chern-Simons gauge field. My model thus mainly describes the temperature interval [Tc, T*], where T*>Tc. However, if T*=Tc, then my model is unnecessary.” Scaling Law to Help in Search for HTS Tao also touched on the importance of his proposed scaling law: “To the best of my knowledge, the scaling law in this study is the first such scaling law proposed for HTS. It emphasizes that the Tc will be inversely proportional to Hall resistivity in a temperature interval [Tc, T*]. By contrast, the existing experimental investigations only confirm a similar scaling law wherein Tc is inversely proportional to the resistivity at the normal state. “The scaling law in this research indicates that the Tc will be inversely proportional to Hall resistivity in a temperature interval [Tc, T*]. This means that the search for HTS should be concentrated on materials whose Hall resistivity in the temperature interval [Tc, T*] is sufficiently small. Unlike the theories of micro-mechanisms, my scaling law describes macroscopic physical variables and will therefore be easier to test or use in industrial production. “In my opinion, the next step in this line of research is to test if the Chern-Simons gauge field emerges in the temperature interval [Tc, T*]. If the Chern-Simons gauge field indeed exists at such a temperature interval, my model has the potential to become a basic theory for describing HTS.”
盡管筆者的超導工作被學校的新聞網下架,但是它最終還是出現在了美國科學媒體《超導周刊》上,這不能不說是一件有意思的事情。任何的科研成果最終都是服務于社會的,我想在這一點上美國《超導周刊》做的非常好:Superconductor Week is the newsletter of record for the superconductor industry, covering technical advances, commercialization, and business in every sector and every country developing superconductor technologies. Superconductor Week is delivered to the desks of leading executives, investors, researchers, and policy-makers around the world, 24 times a year. 筆者的高溫超導標度定律最終總會被實驗所證偽。目前的實驗已經證實了超導轉變溫度與電阻率間的標度關系。筆者的工作是得到超導轉變溫度與霍爾電阻率間的標度關系。筆者之所以將其列為自己的四個原創(chuàng)工作之一,是因為看到了這個工作的深度:任何的超導微觀理論都可以(按格林函數方法)退化為“宏觀朗道-金茲堡方程”(只是系數不同而已),而描述“強關聯(lián)系統(tǒng)”的天然場論似乎最完美的就是“陳-西蒙斯規(guī)范場”。筆者的理論結合“朗道-金茲堡方程”與“陳-西蒙斯規(guī)范場”,按照“重整化群分析”確定了各個系數間的“臨界宏觀定律”,這是具有相當普適性的。假如有一天,“尋找各種宏觀高溫超導定律”這一領域可以興起,那么筆者的工作必定是一道邁不過去的坎。 最后,至少筆者是不敢對“化學及生物醫(yī)藥分析”領域內的論文做評價的,因為筆者確實不懂。 好吧,慢慢等實驗結果。
我的超導論文見鏈接:http://www.nature.com/articles/srep23863
正文所列論文: [1] Yong Tao, Scaling Laws for Thin Films near the Superconducting-to-Insulating Transition, Scientific Reports 6 (2016) 23863 [2] Yong Tao, Testing for Wilson's quantum field theory in less than 4 dimensions, ScienceOpen Research (2015) 本文作者:陶勇
從藥學“杰青”教授評判“高溫超導”論文談起 |